Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 67, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504308

RESUMO

BACKGROUND: Insects have evolved complex visual systems and display an astonishing range of adaptations for diverse ecological niches. Species of Drosophila melanogaster subgroup exhibit extensive intra- and interspecific differences in compound eye size. These differences provide an excellent opportunity to better understand variation in insect eye structure and the impact on vision. Here we further explored the difference in eye size between D. mauritiana and its sibling species D. simulans. RESULTS: We confirmed that D. mauritiana have rapidly evolved larger eyes as a result of more and wider ommatidia than D. simulans since they recently diverged approximately 240,000 years ago. The functional impact of eye size, and specifically ommatidia size, is often only estimated based on the rigid surface morphology of the compound eye. Therefore, we used 3D synchrotron radiation tomography to measure optical parameters in 3D, predict optical capacity, and compare the modelled vision to in vivo optomotor responses. Our optical models predicted higher contrast sensitivity for D. mauritiana, which we verified by presenting sinusoidal gratings to tethered flies in a flight arena. Similarly, we confirmed the higher spatial acuity predicted for Drosophila simulans with smaller ommatidia and found evidence for higher temporal resolution. CONCLUSIONS: Our study demonstrates that even subtle differences in ommatidia size between closely related Drosophila species can impact the vision of these insects. Therefore, further comparative studies of intra- and interspecific variation in eye morphology and the consequences for vision among other Drosophila species, other dipterans and other insects are needed to better understand compound eye structure-function and how the diversification of eye size, shape, and function has helped insects to adapt to the vast range of ecological niches.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila/fisiologia , Drosophila melanogaster/genética , Olho/anatomia & histologia , Especificidade da Espécie
2.
Science ; 383(6686): 951-952, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422155

RESUMO

Key traits set the course of de novo visual system evolution in marine mollusks.

3.
J Exp Biol ; 226(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031956

RESUMO

More than a century of research, of which JEB has published a substantial selection, has highlighted the rich diversity of animal eyes. From these studies have emerged numerous examples of visual systems that depart from our own familiar blueprint, a single pair of lateral cephalic eyes. It is now clear that such departures are common, widespread and highly diverse, reflecting a variety of different eye types, visual abilities and architectures. Many of these examples have been described as 'distributed' visual systems, but this includes several fundamentally different systems. Here, I re-examine this term, suggest a new framework within which to evaluate visual system distribution in both spatial and functional senses, and propose a roadmap for future work. The various architectures covered by this term reflect three broad strategies that offer different opportunities and require different approaches for study: the duplication of functionally identical eyes, the expression of multiple, functionally distinct eye types in parallel and the use of dispersed photoreceptors to mediate visual behaviour without eyes. Within this context, I explore some of the possible implications of visual system architecture for how visual information is collected and integrated, which has remained conceptually challenging in systems with a large degree of spatial and/or functional distribution. I highlight two areas that should be prioritised in future investigations: the whole-organism approach to behaviour and signal integration, and the evolution of visual system architecture across Metazoa. Recent advances have been made in both areas, through well-designed ethological experiments and the deployment of molecular tools.


Assuntos
Olho , Visão Ocular , Animais , Células Fotorreceptoras
4.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935059

RESUMO

Gene duplication generates new genetic material that can contribute to the evolution of gene regulatory networks and phenotypes. Duplicated genes can undergo subfunctionalization to partition ancestral functions and/or neofunctionalization to assume a new function. We previously found there had been a whole genome duplication (WGD) in an ancestor of arachnopulmonates, the lineage including spiders and scorpions but excluding other arachnids like mites, ticks, and harvestmen. This WGD was evidenced by many duplicated homeobox genes, including two Hox clusters, in spiders. However, it was unclear which homeobox paralogues originated by WGD versus smaller-scale events such as tandem duplications. Understanding this is a key to determining the contribution of the WGD to arachnopulmonate genome evolution. Here we characterized the distribution of duplicated homeobox genes across eight chromosome-level spider genomes. We found that most duplicated homeobox genes in spiders are consistent with an origin by WGD. We also found two copies of conserved homeobox gene clusters, including the Hox, NK, HRO, Irx, and SINE clusters, in all eight species. Consistently, we observed one copy of each cluster was degenerated in terms of gene content and organization while the other remained more intact. Focussing on the NK cluster, we found evidence for regulatory subfunctionalization between the duplicated NK genes in the spider Parasteatoda tepidariorum compared to their single-copy orthologues in the harvestman Phalangium opilio. Our study provides new insights into the relative contributions of multiple modes of duplication to the homeobox gene repertoire during the evolution of spiders and the function of NK genes.


Assuntos
Aracnídeos , Aranhas , Animais , Aranhas/genética , Duplicação Gênica , Genes Homeobox , Aracnídeos/genética , Genoma , Evolução Molecular , Filogenia
5.
Evolution ; 76(12): 3026-3040, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36221215

RESUMO

Adaptations to habitats lacking light, such as the reduction or loss of eyes and pigmentation, have fascinated biologists for centuries, yet have rarely been studied in the deep sea, the earth's oldest and largest light-limited habitat. Here, we investigate the evolutionary loss of shell pigmentation, pattern, and eye structure across a family of deep-sea gastropods (Solariellidae). We show that within our phylogenetic framework, loss of these traits evolves without reversal, at different rates (faster for shell traits than eye structure), and over different depth ranges. Using a Bayesian approach, we find support for correlated evolution of trait loss with increasing depth within the dysphotic region. A transition to trait loss occurs for pattern and eye structure at 400-500 m and for pigmentation at 600-700 m. We also show that one of the sighted, shallow-water species, Ilanga navakaensis, which may represent the "best-case" scenario for vision for the family, likely has poor spatial acuity and contrast sensitivity. We therefore propose that pigmentation and pattern are not used for intraspecific communication but are important for camouflage from visual predators, and that the low-resolution vision of solariellids is likely to require high light intensity for basic visual tasks, such as detecting predators.


Assuntos
Ecossistema , Caramujos , Animais , Filogenia , Teorema de Bayes , Caramujos/genética , Olho , Pigmentação
6.
Cells ; 11(4)2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35203282

RESUMO

Animal visual systems are enormously diverse, but their development appears to be controlled by a set of conserved retinal determination genes (RDGs). Spiders are particular masters of visual system innovation, and offer an excellent opportunity to study the evolution of animal eyes. Several RDGs have been identified in spider eye primordia, but their interactions and regulation remain unclear. From our knowledge of RDG network regulation in Drosophila melanogaster, we hypothesize that orthologs of Pax6, eyegone, Wnt genes, hh, dpp, and atonal could play important roles in controlling eye development in spiders. We analyzed the expression of these genes in developing embryos of the spider Parasteatodatepidariorum, both independently and in relation to the eye primordia, marked using probes for the RDG sine oculis. Our results support conserved roles for Wnt genes in restricting the size and position of the eye field, as well as for atonal initiating photoreceptor differentiation. However, we found no strong evidence for an upstream role of Pax6 in eye development, despite its label as a master regulator of animal eye development; nor do eyg, hh or dpp compensate for the absence of Pax6. Conversely, our results indicate that hh may work with Wnt signaling to restrict eye growth, a role similar to that of Sonichedgehog (Shh) in vertebrates.


Assuntos
Proteínas de Drosophila , Aranhas , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Aranhas/genética , Aranhas/metabolismo
7.
G3 (Bethesda) ; 11(12)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34849767

RESUMO

Whole-genome duplications (WGDs) have occurred multiple times during animal evolution, including in lineages leading to vertebrates, teleosts, horseshoe crabs, and arachnopulmonates. These dramatic events initially produce a wealth of new genetic material, generally followed by extensive gene loss. It appears, however, that developmental genes such as homeobox genes, signaling pathway components and microRNAs are frequently retained as duplicates (so-called ohnologs) following WGD. These not only provide the best evidence for WGD, but an opportunity to study its evolutionary consequences. Although these genes are well studied in the context of vertebrate WGD, similar comparisons across the extant arachnopulmonate orders are patchy. We sequenced embryonic transcriptomes from two spider species and two amblypygid species and surveyed three important gene families, Hox, Wnt, and frizzled, across these and 12 existing transcriptomic and genomic resources for chelicerates. We report extensive retention of putative ohnologs, further supporting the ancestral arachnopulmonate WGD. We also found evidence of consistent evolutionary trajectories in Hox and Wnt gene repertoires across three of the six arachnopulmonate orders, with interorder variation in the retention of specific paralogs. We identified variation between major clades in spiders and are better able to reconstruct the chronology of gene duplications and losses in spiders, amblypygids, and scorpions. These insights shed light on the evolution of the developmental toolkit in arachnopulmonates, highlight the importance of the comparative approach within lineages, and provide substantial new transcriptomic data for future study.


Assuntos
Evolução Molecular , Duplicação Gênica , Animais , Genes Controladores do Desenvolvimento , Genoma , Humanos , Filogenia , Vertebrados/genética
8.
J Exp Biol ; 224(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34100540

RESUMO

Spatial vision was recently reported in a brittle star, Ophiomastix wendtii, which lacks discrete eyes, but little is known about its visual ecology. Our aim was to better characterize the vision and visual ecology of this unusual visual system. We tested animal orientation relative to vertical bar stimuli at a range of angular widths and contrasts, to identify limits of angular and contrast detection. We also presented dynamic shadow stimuli, either looming towards or passing the animal overhead, to test for potential defensive responses. Finally, we presented animals lacking a single arm with a vertical bar stimulus known to elicit a response in intact animals. We found that O. wendtii orients to large (≥50 deg), high-contrast vertical bar stimuli, consistent with a shelter-seeking role and with photoreceptor acceptance angles estimated from morphology. We calculate poor optical sensitivity for individual photoreceptors, and predict dramatic oversampling for photoreceptor arrays. We also report responses to dark stimuli moving against a bright background - this is the first report of responses to moving stimuli in brittle stars and suggests additional defensive uses for vision in echinoderms. Finally, we found that animals missing a single arm orient less well to static stimuli, which requires further investigation.


Assuntos
Equinodermos , Orientação , Animais , Orientação Espacial , Visão Ocular
9.
Mol Biol Evol ; 38(8): 3153-3169, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33755150

RESUMO

The Sox family of transcription factors regulates many processes during metazoan development, including stem cell maintenance and nervous system specification. Characterizing the repertoires and roles of these genes can therefore provide important insights into animal evolution and development. We further characterized the Sox repertoires of several arachnid species with and without an ancestral whole-genome duplication and compared their expression between the spider Parasteatoda tepidariorum and the harvestman Phalangium opilio. We found that most Sox families have been retained as ohnologs after whole-genome duplication and evidence for potential subfunctionalization and/or neofunctionalization events. Our results also suggest that Sox21b-1 likely regulated segmentation ancestrally in arachnids, playing a similar role to the closely related SoxB gene, Dichaete, in insects. We previously showed that Sox21b-1 is required for the simultaneous formation of prosomal segments and sequential addition of opisthosomal segments in P. tepidariorum. We studied the expression and function of Sox21b-1 further in this spider and found that although this gene regulates the generation of both prosomal and opisthosomal segments, it plays different roles in the formation of these tagmata reflecting their contrasting modes of segmentation and deployment of gene regulatory networks with different architectures.


Assuntos
Aracnídeos/genética , Evolução Molecular , Fatores de Transcrição SOX/genética , Animais , Aracnídeos/embriologia , Aracnídeos/metabolismo , Feminino , Masculino , Fatores de Transcrição SOX/metabolismo
10.
Biol Bull ; 240(1): 23-33, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33730533

RESUMO

AbstractChitons have a distinctive armature of eight articulating dorsal shells. In all living species, the shell valves are covered by a dense array of sensory pores called aesthetes; but in some taxa, a subset of these are elaborated into lensed eyes, which are capable of spatial vision. We collected a complete ontogenetic series of the eyed chiton Tonicia lebruni de Rochebrune, 1884 to examine the growth of this visual network and found that it expands continuously as eyes are added at the margin during shell growth. Our dataset ranged from a 2.58-mm juvenile with only 16 eyes to adults of 25-31 mm with up to 557 eyes each. This allowed us to investigate the organization (and potential constraints therein) of these sensory structures and their development. Chiton eyes are constrained to a narrowly defined region of the shell, and data from T. lebruni indicate that they are arranged roughly bilaterally symmetrically. We found deviations from symmetry of up to 10%, similar to irregularity reported in some other animals with multiplied eyes. Distances separating successive eyes indicate that, while shell growth slows during the life of an individual chiton, eyes are generated at regular time intervals. Although we could not identify a specific eye-producing tissue or organ, we propose that the generation of new eyes is controlled by a clock-like mechanism with a stable periodicity. The apparent regularity and organization of the chiton visual system are far greater than previously appreciated. This does not imply the integration of shell eyes to form composite images, but symmetry and regular organization could be equally beneficial to a highly duplicated system by ensuring even and comprehensive sampling of the total field of view.


Assuntos
Poliplacóforos , Animais , Visão Ocular
11.
J Comp Neurol ; 529(3): 616-634, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32592497

RESUMO

A great diversity of adaptations is found among animals with compound eyes and even closely related taxa can show variation in their light-adaptation strategies. A prime example of a visual system evolved to function in specific light environments is the fiddler crab, used widely as a model to research aspects of crustacean vision and neural pathways. However, questions remain regarding how their eyes respond to the changes in brightness spanning many orders of magnitude, associated with their habitat and ecology. The fiddler crab Afruca tangeri forages at low tide on tropical and semi-tropical mudflats, under bright sunlight and on moonless nights, suggesting that their eyes undergo effective light adaptation. Using synchrotron X-ray tomography, light and transmission electron microscopy and in vivo ophthalmoscopy, we describe the ultrastructural changes in the eye between day and night. Dark adaptation at dusk triggered extensive widening of the rhabdoms and crystalline cone tips. This doubled the ommatidial acceptance angles and increased microvillar surface area for light capture in the rhabdom, theoretically boosting optical sensitivity 7.4 times. During daytime, only partial dark-adaptation was achieved and rhabdoms remained narrow, indicating strong circadian control on the process. Bright light did not evoke changes in screening pigment distributions, suggesting a structural inability to adapt rapidly to the light level fluctuations frequently experienced when entering their burrow to escape predators. This should enable fiddler crabs to shelter for several minutes without undergoing significant dark-adaptation, their vision remaining effectively adapted for predator detection when surfacing again in bright light.


Assuntos
Adaptação Ocular/fisiologia , Olho/química , Olho/citologia , Fenômenos Fisiológicos Oculares , Animais , Braquiúros , Olho/metabolismo , Feminino , Masculino , Microscopia Eletrônica de Transmissão/métodos
12.
Curr Biol ; 30(2): 319-327.e4, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31902727

RESUMO

Almost all animals can sense light, but only those with spatial vision can "see." Conventionally, this was restricted to animals possessing discrete visual organs (eyes), but extraocular vision could facilitate vision without eyes. Echinoderms form the focus of extraocular vision research [1-7], and the brittle star Ophiocoma wendtii, which exhibits light-responsive color change and shelter seeking, became a key species of interest [4, 8, 9]. Both O. wendtii and an apparently light-indifferent congeneric, O. pumila, possess an extensive network of r-opsin-reactive cells, but its function remains unclear [4]. We show that, although both species are strongly light averse, O. wendtii orients to stimuli necessitating spatial vision for detection, but O. pumila does not. However, O. wendtii's response disappears when chromatophores are contracted within the skeleton. Combining immunohistochemistry, histology, and synchrotron microtomography, we reconstructed models of photoreceptors in situ and extracted estimated angular apertures for O. wendtii and O. pumila. Angular sensitivity estimates, derived from these models, support the hypothesis that chromatophores constitute a screening mechanism in O. wendtii, providing sufficient resolving power to detect the stimuli. RNA sequencing (RNA-seq) identified opsin candidates in both species, including multiple r-opsins and transduction pathway constituents, congruent with immunohistochemistry and studies of other echinoderms [10, 11]. Finally, we note that differing body postures between the two species during experiments may reflect aspect of signal integration. This represents one of the most detailed mechanisms for extraocular vision yet proposed and draws interesting parallels with the only other confirmed extraocular visual system, that of some sea urchins, which also possess chromatophores [1].


Assuntos
Cromatóforos/fisiologia , Equinodermos/fisiologia , Fototaxia , Percepção Visual , Animais , Luz
13.
G3 (Bethesda) ; 10(3): 1005-1018, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31919111

RESUMO

The compound eyes of insects exhibit striking variation in size, reflecting adaptation to different lifestyles and habitats. However, the genetic and developmental bases of variation in insect eye size is poorly understood, which limits our understanding of how these important morphological differences evolve. To address this, we further explored natural variation in eye size within and between four species of the Drosophila melanogaster species subgroup. We found extensive variation in eye size among these species, and flies with larger eyes generally had a shorter inter-ocular distance and vice versa We then carried out quantitative trait loci (QTL) mapping of intra-specific variation in eye size and inter-ocular distance in both D. melanogaster and D. simulans This revealed that different genomic regions underlie variation in eye size and inter-ocular distance in both species, which we corroborated by introgression mapping in D. simulans This suggests that although there is a trade-off between eye size and inter-ocular distance, variation in these two traits is likely to be caused by different genes and so can be genetically decoupled. Finally, although we detected QTL for intra-specific variation in eye size at similar positions in D. melanogaster and D. simulans, we observed differences in eye fate commitment between strains of these two species. This indicates that different developmental mechanisms and therefore, most likely, different genes contribute to eye size variation in these species. Taken together with the results of previous studies, our findings suggest that the gene regulatory network that specifies eye size has evolved at multiple genetic nodes to give rise to natural variation in this trait within and among species.


Assuntos
Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Drosophila simulans/anatomia & histologia , Drosophila simulans/genética , Olho/anatomia & histologia , Animais , Feminino , Genótipo , Masculino , Tamanho do Órgão/genética , Fenótipo , Locos de Características Quantitativas
14.
Sci Rep ; 9(1): 15411, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31659206

RESUMO

Molluscan eyes exhibit an enormous range of morphological variation, ranging from tiny pigment-cup eyes in limpets, compound eyes in ark clams and pinhole eyes in Nautilus, through to concave mirror eyes in scallops and the large camera-type eyes of the more derived cephalopods. Here we assess the potential of non-destructive micro-computed tomography (µ-CT) for investigating the anatomy of molluscan eyes in three species of the family Solariellidae, a group of small, deep-sea gastropods. We compare our results directly with those from traditional histological methods applied to the same specimens, and show not only that eye microstructure can be visualised in sufficient detail for meaningful comparison even in very small animals, but also that µ-CT can provide additional insight into gross neuroanatomy without damaging rare and precious specimens. Data from µ-CT scans also show that neurological innervation of eyes is reduced in dark-adapted snails when compared with the innervation of cephalic tentacles, which are involved in mechanoreception and possibly chemoreception. Molecular tests also show that the use of µ-CT and phosphotungstic acid stain do not prevent successful downstream DNA extraction, PCR amplification or sequencing. The use of µ-CT methods is therefore highly recommended for the investigation of difficult-to-collect or unique specimens.


Assuntos
Evolução Biológica , Olho/diagnóstico por imagem , Olho/inervação , Caramujos/anatomia & histologia , Microtomografia por Raio-X , Animais , Nautilus/anatomia & histologia
15.
Sci Rep ; 9(1): 7614, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31110190

RESUMO

Ontogenetic information is crucial to understand life histories and represents a true challenge in dinosaurs due to the scarcity of growth series available. Mussaurus patagonicus was a sauropodomorph dinosaur close to the origin of Sauropoda known from hatchling, juvenile and mature specimens, providing a sufficiently complete ontogenetic series to reconstruct general patterns of ontogeny. Here, in order to quantify how body shape and its relationship with locomotor stance (quadruped/biped) changed in ontogeny, hatchling, juvenile (~1 year old) and adult (8+ years old) individuals were studied using digital models. Our results show that Mussaurus rapidly grew from about 60 g at hatching to ~7 kg at one year old, reaching >1000 kg at adulthood. During this time, the body's centre of mass moved from a position in the mid-thorax to a more caudal position nearer to the pelvis. We infer that these changes of body shape and centre of mass reflect a shift from quadrupedalism to bipedalism occurred early in ontogeny in Mussaurus. Our study indicates that relative development of the tail and neck was more influential in determining the locomotor stance in Sauropodomorpha during ontogeny, challenging previous studies, which have emphasized the influence of hindlimb vs. forelimb lengths on sauropodomorph stance.


Assuntos
Tamanho Corporal/genética , Tamanho Corporal/fisiologia , Dinossauros/genética , Dinossauros/fisiologia , Locomoção/genética , Locomoção/fisiologia , Animais , Evolução Biológica , Osso e Ossos/fisiologia , Membro Anterior/fisiologia , Fósseis , Ontologia Genética , Membro Posterior/fisiologia
16.
Integr Comp Biol ; 58(3): 367-371, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239782

RESUMO

The evolution of eye loss in subterranean, deep sea, and nocturnal habitats has fascinated biologists since Darwin wrestled with it in On the Origin of Species. This phenomenon appears consistently throughout the animal kingdom, in groups as diverse as crustaceans, salamanders, gastropods, spiders, and the well-known Mexican cave fish, but the nature, extent, and evolutionary processes behind eye loss remain elusive. With the advantage of new imaging, molecular, and developmental tools, eye loss has once again become the subject of intense research focus. To advance our understanding of eye loss as a taxonomically widespread and repeated evolutionary trajectory, we organized a cross-disciplinary group of researchers working on the historic question, "how does eye loss evolve in the dark?." The resulting set of papers showcase new progress made in understanding eye loss from the diverse fields of molecular biology, phylogenetics, development, comparative anatomy, paleontology, ecology, and behavior in a wide range of study organisms and habitats. Through the integration of these approaches, methods, and results, common themes begin to emerge across the field. For the first time, we hope researchers can exploit this new synthesis to identify the broader challenges and key evolutionary questions surrounding eye evolution and so-called regressive evolution and collectively work to address them in future research.


Assuntos
Evolução Biológica , Escuridão , Olho , Fenômenos Fisiológicos Oculares , Animais , Cavernas , Olho/anatomia & histologia , Olho/embriologia , Olho/crescimento & desenvolvimento , Fenômenos Fisiológicos Oculares/genética , Seleção Genética
17.
Integr Comp Biol ; 58(3): 372-385, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29873729

RESUMO

Light is a fundamentally important biological cue used by almost every animal on earth, to maintain daily rhythms, navigate, forage, find mates, or avoid predators. But an enormous number of species live in darkness: in subterranean caves, deep oceans, underground burrows, and within parasitic host bodies, and the loss of eyes appears consistently across these ecosystems. However, the evolutionary mechanisms that lead to the reduction of the visual system remain the subject of great interest and debate more than 150 years after Darwin tackled the issue. Studies of model taxa have discovered significant roles for natural selection, neutral evolution, and pleiotropy, but the interplay between them remains unclear. To nail down unifying concepts surrounding the evolution of eye loss, we must embrace the enormous range of affected animals and habitats. The fine developmental details of model systems such as the Mexican cave tetra Astyanax mexicanus have transformed and enriched the field, but these should be complemented by wider studies to identify truly overarching patterns that apply throughout animals. Here, the major evolutionary drivers are placed within a conceptual cost-benefit framework that incorporates the fundamental constraints and forces that influence evolution in the dark. Major physiological, ecological, and environmental factors are considered within the context of this framework, which appears faithful to observed patterns in deep-sea and cavernicolous animals. To test evolutionary hypotheses, a comparative phylogenetic approach is recommended, with the goal of studying large groups exhibiting repeated reduction, and then comparing these across habitats, taxa, and lifestyles. Currently, developmental and physiological methods cannot feasibly be used on such large scales, but penetrative imaging techniques could provide detailed morphological data non-invasively and economically for large numbers of species. Comprehensive structural datasets can then be contextualized phylogenetically to examine recurrent trends and associations, and to reconstruct character histories through multiple independent transitions into darkness. By assessing these evolutionary trajectories within an energetic cost-benefit framework, the relationships between fundamental influences can be inferred and compared across different biological and physical parameters. However, substantial numbers of biological and environmental factors affect the evolutionary trajectory of loss, and it is critical that researchers make fair and reasonable comparisons between objectively similar groups.


Assuntos
Evolução Biológica , Olho , Fenômenos Fisiológicos Oculares , Animais , Escuridão , Ecossistema , Olho/anatomia & histologia , Olho/embriologia , Olho/crescimento & desenvolvimento , Fenômenos Fisiológicos Oculares/genética , Seleção Genética
18.
J Morphol ; 279(7): 936-949, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29683195

RESUMO

Molluscs demonstrate astonishing morphological diversity, and the relationships among clades have been debated for more than a century. Molluscan nervous systems range from simple 'ladder-like' cords to the complex brains of cephalopods. Chitons (Polyplacophora) are assumed to retain many molluscan plesiomorphies, lacking neural condensation and ganglionic structure, and therefore a brain. We reconstructed three-dimensional anatomical models of the nervous system in eight species of chitons in an attempt to clarify chiton neuroarchitecture and its variability. We combined new data with digitised historic slide material originally used by malacologist Johannes Thiele (1860-1935). Reconstructions of whole nervous systems in Acanthochitona fascicularis, Callochiton septemvalvis, Chiton olivaceus, Hemiarthrum setulosum, Lepidochitona cinerea, Lepidopleurus cajetanus and Leptochiton asellus, and the anterior nervous system of Schizoplax brandtii, demonstrated consistent and substantial anterior neural concentration in the circumoesophageal nerve ring. This is further organised into three concentric tracts, corresponding to the lateral, ventral and cerebral nerve cords. These represent homologues to the three main pairs of ganglia in other molluscs. Their relative size, shape and organisation are highly variable among the examined taxa, but consistent with previous studies of select species, and we formulated a set of neuroanatomical characters for chitons. These support anatomical transitions at the ordinal and subordinal levels; the identification of robust homologies in neural architecture will be central to future comparisons across Mollusca and, more broadly, Lophotrochozoa. Contrary to almost all previous descriptions, the size and structure of the chiton anterior nerve ring unambiguously qualify it as a true brain with cordal substructure.


Assuntos
Encéfalo/anatomia & histologia , Poliplacóforos/anatomia & histologia , Animais , Modelos Anatômicos , Tecido Nervoso/anatomia & histologia , Tomografia
19.
Proc Biol Sci ; 285(1871)2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29367398

RESUMO

Photoreception and vision are fundamental aspects of animal sensory biology and ecology, but important gaps remain in our understanding of these processes in many species. The colour-changing brittle star Ophiocoma wendtii is iconic in vision research, speculatively possessing a unique whole-body visual system that incorporates information from nerve bundles underlying thousands of crystalline 'microlenses'. The hypothesis that these might form a sophisticated compound eye-like system regulated by chromatophores has been extensively reiterated, with investigations into biomimetic optics and similar supposedly 'visual' structures in living and fossil taxa. However, no photoreceptors or visual behaviours have ever been identified. We present the first evidence of photoreceptor networks in three Ophiocoma species, both with and without microlenses and colour-changing behaviour. High-resolution microscopy, immunohistochemistry and synchrotron tomography demonstrate that putative photoreceptors cover the animals' oral, lateral and aboral surfaces, but are absent at the hypothesized focal points of the microlenses. The structural optics of these crystal 'lenses' are an exaptation and do not fulfil any apparent visual role. This contradicts previous studies, yet the photoreceptor network in Ophiocoma appears even more widespread than previously anticipated, both taxonomically and anatomically.


Assuntos
Equinodermos/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Comportamento Exploratório , Imuno-Histoquímica , Microscopia Eletrônica de Varredura , Panamá , Tomografia
20.
Evolution ; 70(10): 2268-2295, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27488448

RESUMO

Eye reduction occurs in many troglobitic, fossorial, and deep-sea animals but there is no clear consensus on its evolutionary mechanism. Given the highly conserved and pleiotropic nature of many genes instrumental to eye development, degeneration might be expected to follow consistent evolutionary trajectories in closely related animals. We tested this in a comparative study of ocular anatomy in solariellid snails from deep and shallow marine habitats using morphological, histological, and tomographic techniques, contextualized phylogenetically. Of 67 species studied, 15 lack retinal pigmentation and at least seven have eyes enveloped by surrounding epithelium. Independent instances of reduction follow numerous different morphological trajectories. We estimate eye loss has evolved at least seven times within Solariellidae, in at least three different ways: characters such as pigmentation loss, obstruction of eye aperture, and "lens" degeneration can occur in any order. In one instance, two morphologically distinct reduction pathways appear within a single genus, Bathymophila. Even amongst closely related animals living at similar depths and presumably with similar selective pressures, the processes leading to eye loss have more evolutionary plasticity than previously realized. Although there is selective pressure driving eye reduction, it is clearly not morphologically or developmentally constrained as has been suggested by previous studies.


Assuntos
Evolução Biológica , Olho/anatomia & histologia , Caramujos/genética , Animais , Filogenia , Pigmentação/genética , Caramujos/anatomia & histologia , Caramujos/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...